SSL AND PUBLIC KEY ENCRYPTION

Topics

1 HTTPS

0 SSL

-1 Public Key Encryption
11 Public Key Certificates

About HTTPS

HTTPS — Secure HTTP

Encrypts HTTP traffic between web browser and web server

Using HTTPS

Create public key certificate
Install on web server

Instruct (or redirect) clients to use https: URL to access application

Web Encryption Standards

1 SSL — Secure Sockets Layer

0 TLS — Transport Layer Security
1 HTTPS — Secure HTTP

SSL and TLS

11 Secure Sockets Layer 01 Transport Layer Security

o Encrypts network 0 "Rebranded SSL" / "Next
communications Generation SSL"

o Invented by Netscape in 1990's 1 Often called SSL

1 Generally, no longer used

SSL/TLS History

SSL was essentially renamed to TLS after SSL 3.0

Year Version

1995 SSL 2.0
1996 SSL 3.0
1999 TLS 1.0 (the "next version" of SSL)
2006 TLS 1.1
2008 TLS 1.2

SSL/TLS Features

SSL (and TLS) offer
Confidentiality (privacy)
Integrity (assurance the data has not been altered)

Authentication (confirmation of who sent the message)

Note: For the rest of this presentation, | will use "SSL" to refer to SSL/TLS

How SSL Works

SSL uses different two encryption mechanisms:

Secret key encryption (aka symmetric encryption) is used to encrypt
most of the traffic

Public key encryption is used for message authentication and to
exchange secret keys securely

Secret Key Encryption

Relies on both parties knowing a shared secret key
A key is a large number (ex. 2048 bits)

Common secret key algorithms used in various versions of SSL:

* DES * IDEA

* Triple DES * Fortezza
* AES * Camellia
* RC2

RC4

Public Key Encryption

Each party has a pair of keys:

A private key known only to the owner

A public key shared with everyone
Messages encrypted with a public key can be decrypted only with the
paired private key

... and messages encrypted with a private key can be decrypted only with
the paired public key

Public key encryption algorithms used in SSL: RSA, DSA

Public Key Scenarios

Send a private message
Send an authenticated message

Send a private, authenticated message

Sending a Private Message

Alice wants to encrypt and send a message to Bob

Alice encrypts plaintext with Bob’s public key
ciphertext = rsa(plaintext, Bob-PubKey)

Alice sends ciphertext to Bob

Bob decrypts ciphertext with Bob’s private key
plaintext = rsa(ciphertext, Bob-PriKey)

Note: Same algorithm (here, “rsa()”) used to either encrypt or decrypt

Sending an Authenticated Message

Alice wants to publish a message publicly that everyone knows came
from her

Alice encrypts plaintext with Alice’s private key
ciphertext = rsa(plaintext, Alice-PriKey)
ciphertext is essentially a digitally signed message

Alice publishes ciphertext

Anyone who has Alice’s public key can decrypt message

plaintext = rsa(ciphertext, Alice-PubKey)

Sending a Private, Authenticated Message

Alice wants to send a message securely to Bob that Bob knows had to come
from her

Alice encrypts plaintext with key
ciphertext = rsa(plaintext,)

Alice encrypts ciphertext with key and transmits to Bob
auth_ciphertext = rsa(ciphertext,)

Bob decrypts auth_ciphertext with key
ciphertext = rsa(auth_ciphertext,)

Bob retrieves original plaintext using key

plaintext = rsa(ciphertext,)

Sending a Private, Authenticated Message

Alice wants to send a message securely to Bob that Bob knows had to come
from her

Alice encrypts plaintext with Bob’s public key
ciphertext = rsa(plaintext, Bob-PubKey)
Alice encrypts ciphertext with Alice's private key and transmits to Bob
auth_ciphertext = rsa(ciphertext, Alice-PriKey)
Bob decrypts auth_ciphertext with Alice's public key
ciphertext = rsa(auth_ciphertext, Alice-PubKey)
Bob retrieves original plaintext using Bob's private key
plaintext = rsa(ciphertext, Bob-PriKey)

Digital Signatures

Public key encryption algorithms
are slow

For efficiency, SSL uses
cryptographic hashing
algorithms to verify message
integrity and digital signatures

Common cryptographic
algorithms for SSL:

SHA-1, SHA-2, SHA-3

Signing

= Hash
function
Hash

101100110101
Data

V=]
=9 =
LR
<%

mO

@ 111101101110
P

Certificate Signature

| /——/
Y
s

Y
Altach
to data

@

Digitally signed data

Verification

3

Digitally signed data

/ N

GIIIIOIIOIIIOI

Signature

Data
using signer*
public key
\ Hash
functios mO
?
101100110101 — 101100110101
Hash Hash

If the hashes are equal, the signature Is valid

How SSL Works

Client encrypts data using a symmetric encryption algorithm and shared
secret key ("session key")

Client computes and appends a MAC and transmits message containing
data + MAC to server

MAC = cryptographic-hash(data + session key)

Server decrypts data using session
key

Server computes MAC on decrypted
data and compares to MAC to
verify message integrity

Symmetric
Key

Credit S
Card

Sharing a Secret Key

During initial handshake, Client generates secret key ("session key")
using random number generator

Client obtains web server's certificate and extracts public key

Client encrypts session key with web

server's public key and transmits to server s IS PUBLIC g PRIVATE
Server decrypts session key using g -
its private key Decypt)

Symmetric Symmetric

SSL Avuthentication

1. Certificate contains unencrypted

data and a digital signature
created by CA

Client verifies CA's digital

@ Digital Certificate
==

PUBLIC ©
Key

PUBLIC 7
Key

signature using CA's certificate e ‘

Public key ?

SSL Overhead

SSL imposes overhead of up to 50% when using SSL.

Overhead largely due to the handshaking necessary to initialize the first SSL
connection between a browser and a server. It only affects the first page
retrieved from a server.

Subsequent pages reuse the same session key.

The data itself is encrypted using fast symmetric encryption algorithms;
thus, large amounts of data do not impose much overhead.

Certificate Management

Certificates

Certificates associate a server or organization name with a public key

Contain
Public key

Naming information
Other attributes

Digital signature
Signature asserts that the named party owns the specified public key

Signature = rsa(sha-1(certificate-data), CA-Private-Key)

Certificate Data

Serial Number
Signature algorithm
Issuer

Validity

Subject

Subject Public Key
Extensions

Signature

A unique integer assigned by the certificate issuer

Specifies algorithm used to sign certificate

The DN of the certificate signer

Date range certificate is valid

The DN of the certificate owner (server or organization name)
Public key of certificate owner

Additional fields

Digital signature created by issuer

Example Certificate

Certificate: 66:36:d0:8e:56:12:44:ba:7 5:eb:e8:1c:9¢:5b:66:
Data: 70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
Version: 1 (0x0) 16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
Serial Number: 7829 (Ox1e95) c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7 a:c7:47:77:
Signature Algorithm: md5WithRSAEncryption 8f:a0:21:c7:4¢:d0:16:65:00:c1:0f:d7:b8:80:e3:
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc, d2:75:6b:c1:ea:9e:5¢c:5¢c:ea:7d:c1:a1:10:bc:b8:
OU=Certification Services Division, e8:35:1c:9e:27:52:7e:41:8f
CN=Thawte Server CA/emailAddress=server-certs@thawte.com Exponent: 65537 (0x10001)
Validity Signature Algorithm: md5WithRSAEncryption
Not Before: Jul 9 16:04:02 1998 GMT 93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
Not After : Jul 9 16:04:02 1999 GMT 92:2e:40a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:
Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, ab:2f:4b:cf:0a:13:90:ee:2¢:0e:43:03:be:fb6:ea:8e:9¢:67:
OU=FreeSoft, CN=www.freesoft.org/emailAddress=baccala@freesoft.org d0:02:40:03:f7:ef:60:15:09:79:09:46:ed:b7:16:1b:41:72:
Subject Public Key Info: 0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d 1:
Public Key Algorithm: rsaEncryption 5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:¢8:f3:d9:17:
RSA Public Key: (1024 bit) 8f:0e:fc:ba:1f:34:€9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22:
Modulus (1024 bit): 68:9f

00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:

33:35:19:d5:0¢:64:b9:3d:41:b2:96:fc:f3:31:e1:

Certificate Creation

Generate public / private key pair
Create Certificate Signing Request (CSR)

Get CSR signed:
By a public CA
By an organizational CA

Self sign

letsencrypt.org offers free 1-year certificates

Further Reading

SSL and TLS: Theory and Practice
Rolf Oppliger

https: / /blogs.msdn.microsoft.com /plankytronixx /2010/10/28 /crypto
-primer-how-does-ssl-work /
A nice primer (We borrowed its illustrations)

Certificate File Formats

X.509 Certificates and RSA keys can be stored in files using
DER format (binary)
PEM format (Base64 encoded DER)
PKCS12 format (Microsoft)
JKS KeyStore format (Java)

Certificate Files

.csr
.pem
key

.cert, .cer,
.crt

.p7b

pfx, .pl12,
.pkcs12

.jks

PEM
PEM
PEM
PEM or DER

PEM
PKCS12

JKS

Certificate signing request
One or more certificates and/or public/private keys
Private key

One or more certificates and/or public/private keys

One or more certificates. Never contains a private key.

One or more certificates and/or public/private keys
Common on Windows

One or more certificates and/or public/private keys (Java)

PEM Example (Certificate Request)

————— BEGIN CERTIFICATE REQUEST-—-—---
MITERDCCAywCAQAWZDELMAKGAIUEBhMCVVMXE JAQBgNVBAGTCUthcm5hdGFrYTES

MBAGAIUEBxMJIQOmMFuzZ2Fsb3J1MOswCQYDVQOKEwJINUzZEMMAOGALIUECXMDQINTMRIwW
EAYDVQODEwlhbmdlbCOyazMwggEiMAOGCSgGSIb3DQEBAQUAA4IBDWAWGgEKAOIR
AAAAADANBgkghkiGOwOBAQUFAAOCAQEANR/QWFBKVXX7TWV1INGWpsZNjMyNoBuwsP
WmJwu2FQ90+TSGexYONI6cS1XcO9EONLIFuONcxJjalLclcW4Ptz1IpEUzK6t1CYVhg
zdnyt 7Fb2d6gY4IsowrWo9IGOAOGB8140xk8oMbBIXs]TZaE6JRW2NUts31HS1gEY
E1POkVex84jbmmIhJlgyBl1SILH3d6rRYy8WaXMkaUTSBlpobvb3eal IsubYTKLEL1YW
9BYv1IMHhVVIX0oGtsl1l0y9s/NRrdvVgDnVjgdYR+bjZaxbIca5loyYaMRCUBzFFICTFE
W801gPN3EcpySUoZbdDBM8R5MbsGWIbliagwToVMkx1KNPpNA31xYhbg==

