
SSL AND PUBLIC KEY ENCRYPTION

Stephen Schaub

Topics
2

 HTTPS

 SSL

 Public Key Encryption

 Public Key Certificates

About HTTPS
3

 HTTPS – Secure HTTP

 Encrypts HTTP traffic between web browser and web server

Using HTTPS
4

 Create public key certificate

 Install on web server

 Instruct (or redirect) clients to use https: URL to access application

Web Encryption Standards
5

 SSL – Secure Sockets Layer

 TLS – Transport Layer Security

 HTTPS – Secure HTTP

SSL and TLS

SSL

 Secure Sockets Layer

 Encrypts network

communications

 Invented by Netscape in 1990's

 Generally, no longer used

TLS

 Transport Layer Security

 "Rebranded SSL" / "Next

Generation SSL"

 Often called SSL

SSL/TLS History

SSL was essentially renamed to TLS after SSL 3.0

Year Version

1995 SSL 2.0

1996 SSL 3.0

1999 TLS 1.0 (the "next version" of SSL)

2006 TLS 1.1

2008 TLS 1.2

SSL/TLS Features

SSL (and TLS) offer

 Confidentiality (privacy)

 Integrity (assurance the data has not been altered)

 Authentication (confirmation of who sent the message)

Note: For the rest of this presentation, I will use "SSL" to refer to SSL/TLS

How SSL Works

SSL uses different two encryption mechanisms:

 Secret key encryption (aka symmetric encryption) is used to encrypt

most of the traffic

 Public key encryption is used for message authentication and to

exchange secret keys securely

Secret Key Encryption

 Relies on both parties knowing a shared secret key

 A key is a large number (ex. 2048 bits)

 Common secret key algorithms used in various versions of SSL:

• DES

• Triple DES

• AES

• RC2

• RC4

• IDEA

• Fortezza

• Camellia

Public Key Encryption

 Each party has a pair of keys:

 A private key known only to the owner

 A public key shared with everyone

 Messages encrypted with a public key can be decrypted only with the

paired private key

 ... and messages encrypted with a private key can be decrypted only with

the paired public key

 Public key encryption algorithms used in SSL: RSA, DSA

Public Key Scenarios

 Send a private message

 Send an authenticated message

 Send a private, authenticated message

Sending a Private Message
13

Alice wants to encrypt and send a message to Bob

1. Alice encrypts plaintext with Bob’s public key

 ciphertext = rsa(plaintext, Bob-PubKey)

2. Alice sends ciphertext to Bob

3. Bob decrypts ciphertext with Bob’s private key

 plaintext = rsa(ciphertext, Bob-PriKey)

Note: Same algorithm (here, “rsa()”) used to either encrypt or decrypt

Sending an Authenticated Message
14

Alice wants to publish a message publicly that everyone knows came

from her

1. Alice encrypts plaintext with Alice’s private key

 ciphertext = rsa(plaintext, Alice-PriKey)

 ciphertext is essentially a digitally signed message

2. Alice publishes ciphertext

3. Anyone who has Alice’s public key can decrypt message

 plaintext = rsa(ciphertext, Alice-PubKey)

Sending a Private, Authenticated Message
15

Alice wants to send a message securely to Bob that Bob knows had to come
from her

1. Alice encrypts plaintext with _____________ key

 ciphertext = rsa(plaintext, _____________)

2. Alice encrypts ciphertext with _____________ key and transmits to Bob

 auth_ciphertext = rsa(ciphertext, _____________)

3. Bob decrypts auth_ciphertext with _____________ key

 ciphertext = rsa(auth_ciphertext, _____________)

4. Bob retrieves original plaintext using _____________ key

 plaintext = rsa(ciphertext, _____________)

Sending a Private, Authenticated Message
16

Alice wants to send a message securely to Bob that Bob knows had to come
from her

1. Alice encrypts plaintext with Bob’s public key

 ciphertext = rsa(plaintext, Bob-PubKey)

2. Alice encrypts ciphertext with Alice's private key and transmits to Bob

 auth_ciphertext = rsa(ciphertext, Alice-PriKey)

3. Bob decrypts auth_ciphertext with Alice's public key

 ciphertext = rsa(auth_ciphertext, Alice-PubKey)

4. Bob retrieves original plaintext using Bob's private key

 plaintext = rsa(ciphertext, Bob-PriKey)

Digital Signatures
17

 Public key encryption algorithms

are slow

 For efficiency, SSL uses

cryptographic hashing

algorithms to verify message

integrity and digital signatures

 Common cryptographic

algorithms for SSL:

 SHA-1, SHA-2, SHA-3

How SSL Works

1. Client encrypts data using a symmetric encryption algorithm and shared
secret key ("session key")

2. Client computes and appends a MAC and transmits message containing
data + MAC to server

 MAC = cryptographic-hash(data + session key)

3. Server decrypts data using session
key

4. Server computes MAC on decrypted
data and compares to MAC to
verify message integrity

Sharing a Secret Key

1. During initial handshake, Client generates secret key ("session key")

using random number generator

2. Client obtains web server's certificate and extracts public key

3. Client encrypts session key with web

server's public key and transmits to server

4. Server decrypts session key using

its private key

SSL Authentication

1. Certificate contains unencrypted

data and a digital signature

created by CA

2. Client verifies CA's digital

signature using CA's certificate

Asymmetric

SSL Overhead
21

 SSL imposes overhead of up to 50% when using SSL.

 Overhead largely due to the handshaking necessary to initialize the first SSL

connection between a browser and a server. It only affects the first page

retrieved from a server.

 Subsequent pages reuse the same session key.

 The data itself is encrypted using fast symmetric encryption algorithms;

thus, large amounts of data do not impose much overhead.

Certificate Management

Certificates

 Certificates associate a server or organization name with a public key

 Contain

 Public key

 Naming information

 Other attributes

 Digital signature

 Signature asserts that the named party owns the specified public key

 Signature = rsa(sha-1(certificate-data), CA-Private-Key)

Certificate Data

Field Description

Serial Number A unique integer assigned by the certificate issuer

Signature algorithm Specifies algorithm used to sign certificate

Issuer The DN of the certificate signer

Validity Date range certificate is valid

Subject The DN of the certificate owner (server or organization name)

Subject Public Key Public key of certificate owner

Extensions Additional fields

Signature Digital signature created by issuer

Example Certificate

Certificate:

Data:

Version: 1 (0x0)

Serial Number: 7829 (0x1e95)

Signature Algorithm: md5WithRSAEncryption

Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,

OU=Certification Services Division,

CN=Thawte Server CA/emailAddress=server-certs@thawte.com

Validity

Not Before: Jul 9 16:04:02 1998 GMT

Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala,

OU=FreeSoft, CN=www.freesoft.org/emailAddress=baccala@freesoft.org

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)

Modulus (1024 bit):

00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:

33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:

66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:

70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:

16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:

c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:

8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:

d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8:

e8:35:1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption

93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:

92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:

ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67:

d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72:

0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1:

5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7:

8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22:

68:9f

Certificate Creation

1. Generate public / private key pair

2. Create Certificate Signing Request (CSR)

3. Get CSR signed:

1. By a public CA

2. By an organizational CA

3. Self sign

 letsencrypt.org offers free 1-year certificates

Further Reading

 SSL and TLS: Theory and Practice

Rolf Oppliger

 https://blogs.msdn.microsoft.com/plankytronixx/2010/10/28/crypto

-primer-how-does-ssl-work/

A nice primer (We borrowed its illustrations)

Certificate File Formats

X.509 Certificates and RSA keys can be stored in files using

 DER format (binary)

 PEM format (Base64 encoded DER)

 PKCS12 format (Microsoft)

 JKS KeyStore format (Java)

Certificate Files

Extension Format Contents

.csr PEM Certificate signing request

.pem PEM One or more certificates and/or public/private keys

.key PEM Private key

.cert, .cer,

.crt

PEM or DER One or more certificates and/or public/private keys

.p7b PEM One or more certificates. Never contains a private key.

.pfx, .p12,

.pkcs12

PKCS12 One or more certificates and/or public/private keys

Common on Windows

.jks JKS One or more certificates and/or public/private keys (Java)

PEM Example (Certificate Request)

-----BEGIN CERTIFICATE REQUEST-----
MIIERDCCAywCAQAwZDELMAkGA1UEBhMCVVMxEjAQBgNVBAgTCUthcm5hdGFrYTES

MBAGA1UEBxMJQmFuZ2Fsb3JlMQswCQYDVQQKEwJNUzEMMAoGA1UECxMDQ1NTMRIw

EAYDVQQDEwlhbmdlbC0yazMwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB

AAAAADANBgkqhkiG9w0BAQUFAAOCAQEANR/QwFBkvXx7WVlnGWpsZNjMyNoBuwsP

Wmjwu2FQ90+TSGexY0NI6cS1Xc9E0NlFuONcxJjaLclcW4Ptz1IpEUzK6t1CYV5q

zJnyt7Fb2d6qY4Is6wrWo9IGOA0G814oxk8oMbBIXsjTZaE6JRW2NUts3lHSlgEY

E1POkVex84jbmmIhJlqyBlSLH3d6rRYy8WaXMkaUTSBlp6vb3ealIsu5YTKtE1YW

9BYv1MHhVVIXoGts10y9s/NRrdVqDnVjgdYR+bjZaxbIca5loyYaMRCUBzFFIC7F

W80lqPN3EcpySUoZbdDBM8R5M6sGWIbiagwToVMkx1KNpNA3lxYh5g==

-----END CERTIFICATE REQUEST-----

